道路上的眼睛与人工智能:华盛顿大学毕业生研发平台,扫描路面缺陷以加速维修并降低成本
内容总结:
【科技创新助力道路养护:西雅图青年开发AI应用高效检测路面破损】
华盛顿州雷德蒙德市近日涌现一项创新技术——由本地青年创业者Aatish Parson开发的AI应用程序"CivicScan"正通过智能手机摄像头自动检测道路裂缝与坑洼。这款基于计算机视觉和机器学习模型的工具,可在车辆行驶过程中实时扫描路面,精准识别破损区域并同步记录地理位置数据,为市政部门提供高效的道路维护解决方案。
作为华盛顿大学计算机科学专业新晋毕业生,帕森在今年夏季全力推进该项目。其技术实测成效显著:仅在雷德蒙德市区一小时的测试中,系统就识别出超过1.3万处路面裂缝。通过专用网站发布的"路面缺陷实时地图",工作人员可清晰查看每处破损的精确轮廓定位,而非简单框选标记。
目前西雅图地区仍主要依赖传统道路养护模式。市民通过"Find it, Fix It"应用、市政网站或热线电话申报坑洼问题,养护团队采用"先报先修"的优先级处理机制。虽然市政部门尚未引入AI检测技术,但已通过夜间更新的"坑洼修复状态地图"向公众开放进度查询。
帕森表示,该创新源于切身经历:"我的车辆悬架系统因频繁颠簸受损,这种困扰促使我思考解决方案"。他驾驶着装配简易手机支架的2009款讴歌MDX,怀揣"帮助家乡乃至更多城市"的公民责任感持续优化系统。
值得一提的是,华盛顿州县级道路管理委员会(CRAB)要求申请主干道维修资金的地区必须建立 pavement管理系统。CivicScan的技术优势恰好能满足其对路面生命周期分析和评级评估的需求,有望帮助政府部门在预算受限的情况下做出更科学的决策。
帕森展望未来:"设想市政工作人员只需在巡查时开启车载手机应用,所有数据由CivicScan自动处理生成决策看板——这不仅能提升效率,更将让我们的道路变得更加平整安全。"
中文翻译:
初创企业的成功之路往往布满荆棘,而对阿蒂什·帕森(Aatish Parson)而言,这些颠簸却恰合时宜——西雅图地区道路上的裂缝与坑洼,正为他开发的"CivicScan"应用提供着关键数据。
这位来自华盛顿州雷德蒙德的新晋华盛顿大学计算机科学毕业生,整个夏季都在完善他在校期间启动的项目,致力于拓展其应用范围并提升实用性。CivicScan是一款基于人工智能的应用程序,通过固定在汽车挡风玻璃或仪表台上的移动设备对道路进行扫描。帕森的平台运用计算机视觉和机器学习模型,自动检测路面缺陷,为简化养护规划提供视觉证据和定位数据。
在本周发布于领英的推文中,帕森表示其技术仅在雷德蒙德行驶一小时后便识别出超过1.3万处裂缝。他期待市政道路部门能运用这种技术,避免因路面损坏及相应维护成本带来的更大困扰。
去年暑期在亚马逊软件工程实习期间,帕森曾致力于扩展道路状况地图数据的覆盖范围,并研究车辆机动性以提升配送司机安全性。当被问及是否有其他经历促使他对交通与城市基础设施产生兴趣时,帕森给出了无数驾驶者都能共鸣的回答:"或许是出于烦恼。说实话,我的车辆悬挂系统一直很颠簸,总是不断碾过这些坑洼。"
驾驶着2009款讴歌MDX,用15美元的亚马逊磁性支架固定手机,帕森视帮助家乡及其他感兴趣的城市改善路况为己任。在CivicScan网站上,用户可实时查看雷德蒙德地区的"路面缺陷地图"。其模型不仅能在裂缝周围生成标注框,更能精准勾勒出缺陷轮廓。
当然并非所有路面缺陷都需优先修补。但帕森担心未被处理的裂缝会加速水分渗透与路面恶化,导致最终维修成本上升。在西雅图运输部(SDOT),目前仍依靠低技术含量的系统监测道路:居民可通过"Find it, Fix It"应用、部门官网或热线电话报告路况,养护团队也会在日常工作中记录问题。该部门采用"先报告先修复"的优先级处理模式,虽未使用AI技术,但设有可实时追踪维修进度的"坑洞状态地图"。
纵观华盛顿州,县级道路管理委员会(CRAB)负责处理全州39个县交通基础设施维护升级的复杂事务。要获得主干道维修资金,各县必须建立路面管理系统,用以分析路面生命周期与评级,确定最佳维护时机与最具成本效益的方案。
帕森构想未来市县道路部门工作人员只需将手机固定在挡风玻璃上行驶,便能扫描道路收集数据。他非常乐意通过CivicScan处理这些信息,构建行动仪表盘或其他可视化工具辅助维修决策。"我希望用数据支持科学决策,毕竟预算本就紧张。"他说道,"这构想很酷不是么?届时我们的道路都将平坦如镜。"
英文来源:
The road to startup success is often a bumpy one. Aatish Parson prefers it that way, for now, as the cracks and potholes on roads in the Seattle area provide key data for something called CivicScan.
A Redmond, Wash., native and recent computer science graduate from the University of Washington, Parson has been spending the summer working on the project he first started in school, with the goal of expanding it and making it more usable.
CivicScan is an AI-powered app that works via a mobile device pointed at the road from a vehicle windshield or dashboard. Parson’s platform scans the road ahead, using computer vision and machine learning models to automatically detect pavement defects, providing visual evidence and location data for more streamlined maintenance planning.
In a post on LinkedIn this week, Parson said his tech identified more than 13,000 cracks after just an hour of driving around Redmond. His vision is for municipal road departments to use such technology to head off bigger nightmares around failing pavement and the cost associated with such upkeep.
Parson did a software engineering internship at Amazon last summer, in which he worked on expanding map data coverage of road conditions and vehicle maneuverability to enhance safety for delivery drivers.
Asked whether anything else in his background created an interest in transportation or city infrastructure and made him want to address the problem of deteriorating roads, Parson offered up an answer that plenty of drivers can relate to.
“Maybe frustration,” he said. “To be honest, my car suspension has been pretty rocky. I was like, ‘I keep hitting these potholes.'”
Driving a 2009 Acura MDX with a $15 magnetic mount off Amazon holding his phone in place, Parson feels like it’s his civic duty to help his hometown — and any other cities or counties which might be interested.
On the CivicScan website, users can view a live “Pavement Defect Map” showing roads in Redmond that Parson has scanned. His model doesn’t just paint a box around a crack in the surface, but accurately traces the outline of the defect.
Certainly every flaw in the surface of every road doesn’t rate as a priority for fixing. But Parson worries that cracks left unattended will just invite water to seep in and more deterioration to occur, causing the price of an eventual fix to rise.
Across Lake Washington, the Seattle Department of Transportation relies on a lower-tech system for keeping an eye on roadways.
Residents can report potholes through a number of channels, including the “Find it, Fix It” app, SDOT’s website, or by calling 206-684-ROAD. Maintenance crews also identify potholes during routine work, and requests can come in via the Mayor’s Office and City Council. Pothole crews respond with a first reported, first repaired method as the prioritization model, according to SDOT.
The agency does not use AI or computer vision for any pothole detection at this time, but it does have its own map — called the “Pothole Status Map” — where the public can track repair requests in real time. It’s updated nightly with both open and completed reports.
More broadly across Washington state, the County Road Administration Board (CRAB) deals with many of the intricacies of preserving and enhancing the transportation infrastructure of the state’s 39 counties.
In order to be eligible for arterial road repair funds, counties must have a Pavement Management System in place to help analyze pavement life cycles and pavement ratings to determine the best timing and cost-effective method for pavement preservation.
Parson just pictures workers from a city or county road department driving around now and then with a phone on their windshield scanning the roads ahead of them, collecting useful data. He’d be happy to have CivicScan process it all and build an action dashboard or any other necessary visualization to help with repair decisions.
“I want to give everyone the data to make a more informed decision, because budgets are already tight, right?” he said. “I think that’d be pretty cool. And our roads would all be quite smooth.”
文章标题:道路上的眼睛与人工智能:华盛顿大学毕业生研发平台,扫描路面缺陷以加速维修并降低成本
文章链接:https://www.qimuai.cn/?post=219
本站文章均为原创,未经授权请勿用于任何商业用途