«

癌症人工智能联盟称新技术平台将以创新隐私方案加速突破。

qimuai 发布于 阅读:23 一手编译


癌症人工智能联盟称新技术平台将以创新隐私方案加速突破。

内容来源:https://www.geekwire.com/2025/cancer-ai-alliance-says-new-tech-platform-will-speed-breakthroughs-with-novel-privacy-approach/

内容总结:

美国多家顶尖癌症研究中心联合组建的"癌症人工智能联盟",近日成功研发出一项突破性医疗AI技术平台。该平台通过联邦学习技术,在无需集中共享患者数据的前提下,成功实现了跨机构医疗数据的协同分析,有望将癌症新发现的研究周期从数年缩短至数月。

这一创新体系由弗雷德·哈钦森癌症中心领衔,联合丹娜-法伯癌症研究所、纪念斯隆·凯特琳癌症中心及约翰斯·霍普金斯大学等权威机构共同开发,并获得亚马逊、微软、谷歌及英伟达等科技巨头的技术支持。平台采用"本地训练、汇总共享"的模式,各机构在内部防火墙内对匿名化数据进行模型训练,仅共享分析摘要,既保障了患者隐私,又实现了多中心数据的协同价值。

联盟战略协调中心主任布莱恩·博特强调,该平台在一年内快速建成并投入使用,展现了联盟团体抗击癌症的共同决心。实际应用案例显示,研究人员通过该平台仅用10分钟就获得了此前无法实现的突破性发现——成功完成四大癌症中心数据的联合分析。

目前联盟已启动八个重点研究项目,涵盖治疗效果预测、生物标志物识别和罕见癌症研究等领域。据悉,该平台将于本周通过艾伦人工智能研究所的Asta科研平台正式推出,其独创的智能分析工具支持研究人员使用自然语言进行数据查询,并能自动生成可视化分析结果,极大降低了临床医生使用AI技术的门槛。

联盟计划在未来一年内扩展系统规模,吸纳更多癌症中心加入,推动数十个新增研究模型的落地。更多技术细节将在西雅图马德罗纳人工智能峰会上公布。这项突破标志着癌症研究正式迈入跨机构协同智能分析的新纪元。

中文翻译:

美国顶尖癌症研究中心联盟近日发布一项人工智能平台,该平台能在保护患者隐私的前提下,整合多家医疗机构的临床数据训练AI模型,旨在将癌症新发现的研发周期从数年缩短至数月。

由西雅图弗雷德·哈钦森癌症中心领衔的"癌症人工智能联盟"(CAIA)表示,该平台能帮助研究人员在更广泛、更多元的患者群体中发现规律,其数据覆盖规模远超单一机构的承载能力。

这个于一年前宣布成立的联盟,目前成员包括丹娜—法伯癌症研究所、纪念斯隆·凯特琳癌症中心、约翰斯·霍普金斯大学,并获得了亚马逊、微软、谷歌、德勤、Slalom、英伟达以及西雅图艾伦人工智能研究所(Ai2)的技术支持。

"就在十分钟前,我们取得了前所未有的突破性发现——因为此前从未有人能对四家癌症中心的数据进行联合分析。"Ai2研究所科学家博迪萨特瓦·普拉萨德·马朱姆达尔在周一下午的专访中透露。

过去一年间,联盟成员着力构建了一套分布式学习系统,使人工智能无需将患者数据汇集至中央数据库即可实现跨机构学习。

该联邦学习平台的工作原理是:各机构在本地防火墙内使用脱敏数据训练模型,仅共享训练结果的摘要信息,最终通过整合这些摘要来提升模型的鲁棒性与精确度。

"我们在短短一年内携手推出这个平台具有里程碑意义。作为以攻克癌症为共同使命的联合体,这一成就无论如何强调都不为过。"弗雷德·哈钦森癌症中心CAIA战略协调中心主任布莱恩·博特在新闻稿中表示。

Ai2研究所为其新型Asta DataVoyager系统进行了定制开发,使该工具能在不转移或暴露病患记录的前提下实现跨中心数据分析。这家西雅图研究机构本周正式将DataVoyager作为其Asta科研平台的重要组成部分推向市场。

该工具作为智能代理,支持科研人员用自然语言对数据提问,并能提供附带可复现代码及可视化图表的清晰解答。这让非编程背景的临床医生和研究人员也能自主探索数据、获得洞见。

据CAIA透露,参与机构的研究人员已依托该平台启动八个研究项目,重点聚焦治疗反应预测、生物标志物识别,以及基于大样本的罕见癌症趋势分析等领域。

联盟计划在未来一年扩展系统规模,吸纳更多癌症中心加入,并在初始项目基础上部署数十个新增研究模型。

更多关于该联盟的详细信息将于今日在西雅图马德罗纳人工智能峰会上发布——恰是一年前该联盟的诞生之地。

英文来源:

A consortium of top U.S. cancer centers has developed an AI platform that trains models on clinical data from multiple institutions while protecting patient privacy, with the goal of cutting the timeline for new discoveries in cancer research from years to months.
Officials with the Cancer AI Alliance (CAIA), led by Seattle’s Fred Hutchinson Cancer Center, say the approach will help researchers identify patterns across larger and more diverse patient populations than any single institution would have access to on its own.
The alliance, announced a year ago, also includes Dana-Farber Cancer Institute, Memorial Sloan Kettering Cancer Center, and Johns Hopkins University, with support from Amazon, Microsoft, Google, Deloitte, Slalom, NVIDIA, and Seattle’s Allen Institute for AI (Ai2).
“Literally, 10 minutes back, we were able to get to a result that nobody has seen ever before … because nobody has been able to run that analysis across four cancer centers’ data,” said Bodhisattwa Prasad Majumder, an Ai2 research scientist, in an interview Monday afternoon.
Members of the alliance spent much of the past year building a system that allows AI to learn from data spread across institutions without pooling patient records in a central database.
The system is a federated learning platform: models are trained locally on de-identified data inside each institution’s firewalls, and only summaries of those learnings are shared. Those summaries are then combined to improve the strength and accuracy of the models.
“It cannot be overstated how momentous it is that we came together to launch this platform in just one year, and we did it as a unified alliance with a shared mission to eradicate cancer,” said Brian M. Bot of Fred Hutch, director of the CAIA strategic coordinating center, in a news release.
Ai2 adapted its new Asta DataVoyager system for the alliance, enabling the tool to analyze data across cancer centers without moving or exposing patient records. The Seattle-based institute is officially launching DataVoyager this week as part of its broader Asta platform for scientific research.
The Ai2 tool works as an AI agent, allowing scientists to ask questions of the data in plain language and receive clear answers backed by reproducible code and visualizations. This gives clinicians and researchers who aren’t coders the ability to explore the data and generate insights on their own.
According to the Cancer AI Alliance, researchers at the participating centers have begun eight projects using the platform — focused on areas including predicting treatment response, identifying biomarkers, and studying rare cancer trends across larger patient populations.
The alliance says it plans to scale up the system over the next year, adding more cancer centers and enabling dozens of additional research models beyond the initial projects.
More information about the Cancer AI Alliance is expected to come today at the Madrona IA Summit in Seattle, where the alliance was originally announced a year ago.

Geekwire

文章目录


    扫描二维码,在手机上阅读