«

全球顶尖机构的一千零一项真实生成式AI应用实例

qimuai 发布于 阅读:7 一手编译


全球顶尖机构的一千零一项真实生成式AI应用实例

内容来源:https://blog.google/products/google-cloud/gen-ai-business-use-cases/

内容总结:

全球领先企业正加速将生成式人工智能投入实际应用。根据谷歌云最新发布的行业案例汇编,目前已有超过1001个真实世界生成式AI应用场景,覆盖汽车制造、金融服务、医疗健康等关键领域。

在汽车与物流行业,梅赛德斯-奔驰通过Gemini技术打造能够与驾驶员自然对话的MBUX虚拟助手,日本最大二手交易平台Mercari则利用AI客服系统将员工工作量降低20%,同时预期实现500%的投资回报率。物流领域,UPS通过建立数字孪生系统实现包裹全流程追踪,Domina物流公司借助AI平台将实时数据访问效率提升80%。

金融服务业呈现智能化转型趋势。阿根廷最大私人银行Banco Macro部署对话式AI助手服务600万客户,德国商业银行的智能客服已成功处理超200万次对话。保险科技公司Loadsure通过AI实现近实时理赔处理,加拿大ATB金融集团员工应用AI工具后平均每周节省约3小时工作时间。

医疗健康领域取得突破性进展。印度Manipal医院将电子药房订单处理时间从15分钟压缩至5分钟,美国西雅图儿童医院利用AI将护士交接班记录时间从90分钟大幅缩减至20分钟。德国保险提供商SIGNAL IDUNA通过AI知识助手将初级客服信息查询效率提升30%。

消费品行业迎来营销革命。法国卡夫亨氏运用AI技术将广告活动制作周期从八周缩短至八小时,英国零售商Lush通过图像识别系统在圣诞购物高峰期间将排队时间控制在3分钟以内。瑞典二手交易平台Tradera利用AI实现商品自动上架,用户发布商品时间减少50%。

制造业与科技领域同样成果显著。列车制造商Talgo推出多语言AI助手为维护团队提供技术支持,博世数字部门通过AI实现营销内容的全球化本地适配。诺基亚基于Vertex AI平台增强其“网络即代码”功能,显著加速5G应用开发进程。

这份涵盖11大行业、6类智能体的案例清单显示,生成式AI正在从概念验证阶段迈向规模化部署,在提升运营效率、优化客户体验和创造新商业模式等方面展现出巨大潜力。随着技术持续演进,人工智能有望突破现有想象边界,为各行业带来更深层次的变革。

中文翻译:

全球顶尖机构的1001个真实世界生成式AI应用场景

本文最初发布于"Transform with Google Cloud"博客,首发于2024年4月12日,最新案例更新于2025年10月9日。

一年半前,在Google Cloud Next '24大会上,我们首次发布了这份清单,当时仅收录了101个案例。
这在当时已堪称海量,充分展示了谷歌乃至整个行业在生成式AI应用方面的迅猛势头。在生成式AI广泛普及的短暂时期内,各种规模的组织已开始尝试并将其投入生产和全球工作中,其应用速度在新技术中实属罕见。

过去数月带来的变化天翻地覆。我们的清单现已扩展了10倍。然而,这仅仅是AI在企业中潜力的冰山一角,或是未来一年半内可能涌现的创新缩影。

众多应用案例将于本周在我们的"Gemini at Work"活动中亮相,您今天即可观看直播。

梅赛德斯-奔驰正在打造能与驾驶员对话的汽车;日本最大在线市场Mercari和德国商业银行则让联系客服专员变得前所未有的便捷——Mercari甚至预计在降低员工工作负荷20%的同时实现500%的投资回报率。谈及规模:维珍邮轮使用Veo的文生视频功能,一次性创建了数千个高度个性化的广告和电子邮件,且不牺牲品牌声音或风格。它们并非孤例。自称"协作式界面设计工具"的Figma,让任何组织都能在几秒钟内创建高质量、符合品牌规范的图片和资源。

【想了解如何构建类似AI应用?请查看我们实用的指南,内含来自这些真实案例的101个技术蓝图。】

鉴于我们持续见证的创新和进步速度,我们坚信,随着客户不断挑战我们去设计、构建、部署并创造价值,AI的发展将超越我们的想象。

希望您能在此找到推动我们共同AI事业的内容。

本清单按11个主要行业组别组织,每个组别下又分六种智能体类型:客户、员工、创意、代码、数据和安防。本版新增400个条目,在机构名称前以星号(*)标示。

汽车与物流
客户智能体

员工智能体

代码智能体

数据智能体

安防智能体

商业与专业服务
客户智能体

员工智能体

英文来源:

1,001 real-world gen AI use cases from the world's leading organizations
This post originally appeared on the Transform with Google Cloud blog. It was first published April 12, 2024; last updated with new use cases October 9, 2025.
A year and a half ago, during Google Cloud Next 24, we published this list for the first time. It numbered 101 entries.
It felt like a lot at the time, and served as a showcase of how much momentum both Google and the industry were seeing around generative AI adoption. In the brief period then of gen AI being widely available, organizations of all sizes had begun experimenting with it and putting it into production across their work and across the world, doing so at a speed rarely seen with new technology.
What a difference these past months have made. Our list has now grown by 10X. And still, that’s just scratching the surface of what’s becoming possible with AI across the enterprise, or what might be coming in the next year and a half.
Many of these use cases are coming to life this week at our Gemini at Work event, which you can watch live today.
Mercedes Benz is building cars that can converse with their drivers while Mercari, Japan’s largest online marketplace, and Commerzbank are making it easier than ever to reach a customer service agent — Mercari even anticipates a 500% ROI while reducing employee workloads by 20%. And talk about scale: Virgin Voyages is using Veo’s text-to-video features to create thousands of hyper-personalized ads and emails in a single go without sacrificing brand voice or style. Nor are they alone. Figma, which calls itself the “collaborative interface design tool,” lets any organization create high-quality, brand-approved images and assets in seconds.
[Looking for how to build AI use cases just like these? Check out our handy guide with 101 technical blueprints from some of these real-world examples.]
Given the incredible pace of innovation and progress we continue to see, we are confident that AI will grow beyond even our imagination as our customers continue to challenge us to design, build, deploy, and create value.
Hopefully you find something here that will propel our own AI endeavors together.
The list is organized by 11 major industry groups, and within those, six agent types: Customer, Employee, Creative, Code, Data, and Security. There are 400 new entries in this edition, denoted with an asterisk (*) before the organization’s name.
Automotive and Logistics
Customer Agents

谷歌新消息

文章目录


    扫描二维码,在手机上阅读