«

谷歌发布Gemini 3.1 Pro,主打企业市场。

qimuai 发布于 阅读:1 一手编译


谷歌发布Gemini 3.1 Pro,主打企业市场。

内容来源:https://aibusiness.com/generative-ai/google-releases-gemini-3-1-pro

内容总结:

谷歌发布新一代AI模型Gemini 3.1 Pro,强调其复杂推理与代码生成能力

近日,谷歌正式推出新一代人工智能模型Gemini 3.1 Pro,宣称该模型在复杂问题解决和高级推理方面实现突破。该模型能够根据文本指令直接生成可用于网站的动画矢量图形(SVG),并具备处理API数据、调用集成工具进行编程模拟等能力。

此次更新正值AI行业竞争加剧之际。此前,谷歌的竞争对手Anthropic于2月17日发布了专注于编程能力提升的Sonnet 4.6模型,而谷歌自身也在上周升级了专注于科研问题解决的Gemini Deep Think模型。行业分析指出,当前各大模型提供商正竞相推进“智能体AI”的演进,并将强化推理能力作为关键发展方向。

华盛顿大学信息学院教授Chirag Shah对此评论称:“虽然更强的推理能力确实是处理复杂任务的基础,但‘复杂’的定义本身存在模糊性。仅宣称模型能处理复杂任务,仍需谨慎看待。”高德纳分析师William McKeon-White则认为,此次更新体现了“持续而稳健的进步”,但尚未达到“根本性突破”。

值得注意的是,谷歌正通过Gemini系列的迭代,展现其打造多功能企业级AI解决方案的战略意图。Shah教授指出:“谷歌试图成为满足企业所有模型需求的一站式服务商。”尽管在特定领域(如Anthropic在编程方面的专长)尚未形成绝对优势,但谷歌正通过构建覆盖代码生成、信息检索等多任务能力的模型组合,争取企业在选择AI生态系统时将其作为优先选择。

当前,企业在选择AI供应商时往往倾向于采用单一生态系统。谷歌此次发布,正是其巩固企业市场地位、展现全方位服务能力的重要举措。

中文翻译:

由谷歌云赞助
选择你的首批生成式AI应用场景
要开启生成式AI之旅,首先应关注能够优化人类信息交互体验的领域。

模型升级虽属渐进式改进,却彰显了谷歌持续吸引企业用户选择其作为模型供应商的策略。
随着下一代智能体AI对高阶推理能力提出要求,谷歌于周二发布了Gemini 3.1 Pro模型以应对这一需求。

谷歌表示Gemini 3.1 Pro标志着核心推理能力的又一次进阶。该模型更擅长解决复杂问题,适用于需要超越简单答案的任务场景。在编程任务中,该模型能根据文本指令直接生成可直接用于网站的动画可缩放矢量图形(SVG)。SVG是通过指令而非像素构成的图像格式。

此次Gemini 3.1 Pro的发布,紧随生成式AI供应商兼谷歌竞争对手Anthropic于2月17日推出的专注提升编程与计算机应用技能的Sonnet 4.6模型。这也距离谷歌升级其用于解决高难度研究问题的思考模型Gemini Deep Think仅一周时间。

此次发布同时揭示了AI市场的趋势:模型供应商正竞相推进智能体AI的下一发展阶段,并强调更强的推理能力将助力企业实现这一目标。由于推理是智能体AI的核心组成部分,具备更优推理能力的模型自然比推理能力薄弱的系统更具优势。

华盛顿大学信息学院教授奇拉格·沙阿指出:"理论上,要完成复杂任务确实需要更强的推理能力。"但他同时强调,更好的推理能力并非复杂任务所需的唯一基石,且谷歌对'复杂'的定义尚不明确。"仅宣称'这个模型能处理复杂任务'需要谨慎看待,因为这完全取决于如何定义'复杂'。"

高德纳分析师威廉·麦基翁-怀特指出,Gemini 3.1 Pro还展现出其他强大能力,例如从API摄取、理解并处理数据,以及使用集成工具编写模拟程序。"这是持续向好的进步,但尚未达到我认为具有颠覆性变革的程度。"

除了强调推理能力的提升,谷歌通过迭代升级其核心基础模型Gemini,也展示了如何构建满足多元化企业需求的模型体系。尽管谷歌尚未像Anthropic在编程领域那样形成特定任务的品牌认知,但这家科技巨头正致力于向企业证明其在这些任务领域同样游刃有余。

沙阿分析称:"谷歌希望成为满足所有模型需求的一站式供应商。"他补充道,谷歌正试图构建能同时吸引关注编程、搜索及信息处理任务企业的产品组合。虽然企业可能面临从Anthropic、OpenAI、谷歌或其他供应商中多选一的机会,但多数最终只会选择一个生态系统进行深度投入。谷歌正努力提供精心打造、适配不同企业需求的模型解决方案。

英文来源:

Sponsored by Google Cloud
Choosing Your First Generative AI Use Cases
To get started with generative AI, first focus on areas that can improve human experiences with information.
The model upgrade is incremental, but it points to ways Google continues to appeal to businesses as the model provider of choice.
With the next level of agentic AI requiring high-level reasoning, Google on Tuesday released Gemini 3.1 Pro to deliver it.
Google said Gemini 3.1 Pro represents the next step in core reasoning. The model is better at complex problem-solving and is meant for tasks for which a simple answer is not enough. With coding tasks, the model can generate website-ready animated scalable vector graphics (SVGs) directly from text prompts. SVGs are images created with instructions rather than pixels.
The release of Gemini 3.1 Pro follows generative AI vendor and Google rival Anthropic's introduction on Feb. 17 of Sonnet 4.6, a model that focuses on improved coding and computer use skills. It also comes a week after Google upgraded Gemini Deep Think, its thinking model to solve challenging research problems.
The release also illuminates a trend in the AI market in which model providers are pushing toward the next step of agentic AI and touting that better reasoning will help enterprises get there. Since reasoning is a significant part of agentic AI, a model with improved reasoning skills is a superior AI system than one with subpar reasoning capabilities.
"In principle, it is true that if you want to do complex tasks, you have to be able to do better reasoning," said Chirag Shah, a professor at the Information School at the University of Washington.
However, better reasoning is not the only building block needed for complex tasks, Shah said. Moreover, it is unclear what Google means by "complex."
"Just saying that, 'oh this model can do complex tasks,' you have to take it with a grain of salt because it depends on how you define complex," he said.
But Gemini 3.1 Pro also demonstrates other strong capabilities, such as the ability to ingest, understand, and consume data from an API, and to code a simulation using integrated tools, said William McKeon-White, an analyst at Gartner.
"This is good, continued progress," McKeon-White said. "However, there wasn't something I would say is a fundamental gamechanger."
Beyond touting better reasoning skills, Google, in rolling out updated iterations of its core foundation model, Gemini, is also showing how it is building models that serve multiple enterprise needs. Although Google has yet to become known as the preferred AI vendor for a specific task, as Anthropic is known for coding, the tech giant is aiming to show enterprises that it is still well-versed in those tasks.
"They want to be the one-stop shop for all your model needs," Shah said, adding that Google is trying to build a portfolio that will appeal to enterprises that might care about coding, searching and informational tasks. While enterprises might have the option to choose from Anthropic, OpenAI, Google or other vendors, most will settle on only one ecosystem to buy into. Google is trying to provide well-crafted models that fit different enterprise needs.

商业视角看AI

文章目录


    扫描二维码,在手机上阅读