借助人工智能与可持续发展理念设计更优质的产品
内容总结:
【人工智能与可持续设计共创绿色未来,西门子减碳实践彰显行业变革】
在全球碳排放量创历史新高的背景下,企业正面临联合国可持续发展目标与消费者环保需求的双重压力。西门子公司通过人工智能生成式设计工具,对机器人抓爪进行重新设计,成功实现部件减重90%、零件数量减少84%,单台机器人年均可减少3吨碳排放。若将这一技术应用于全球400多万台工业机器人,其碳减排潜力将极为可观。
西门子可持续性与工业人工智能负责人Pina Schlombs指出:“人工智能正从根本上重塑产品开发中的可持续实践,通过智能设计选择、实时影响评估及循环设计,帮助企业平衡市场与环保需求。”这一趋势亦得到市场数据支持:普华永道报告显示,80%消费者愿为可持续产品支付更高价格。与此同时,国际财务报告准则(IFRS)、欧盟《企业可持续发展报告指令》等法规正加速推动企业可持续转型。
人工智能技术正贯穿产品全生命周期,助力企业构建兼具创新性与环保性的生产模式,为制造业绿色升级提供关键路径。
中文翻译:
赞助内容
运用人工智能与可持续理念设计更优质产品
人工智能工具能够彻底改变产品在整个生命周期中的影响,助力企业赢得未来。
本文由Tech Mahindra联合呈现
为降低零部件制造过程中的环境影响,西门子公司将目光投向机器人抓手的重新设计。这种仿手装置虽仅占机器人总重的2%,其影响却不容小觑——通过将抓手重量减轻90%、部件数量减少84%,每台机器人每年可减少高达3吨的二氧化碳排放。试想全球400多万台工业机器人若全部实现同等节能效果,这无疑将引发一场深刻的产业变革。
实现这一突破的关键,在于西门子采用了人工智能驱动的生成式设计工具。该系统能自主探索多种解决方案,并快速进行功能性与可制造性测试优化。"人工智能与生成式AI正在从根本上重塑可持续理念融入产品开发的方式,"西门子可持续业务负责人兼工业人工智能思想领袖皮娜·施洛姆斯指出,"通过赋能更智能的设计选择、实时影响评估及循环设计,这些技术帮助企业创造出同时满足市场需求与环保要求的创新产品。"
随着2024年全球碳排放量创下历史新高,企业面临越来越大的减排压力,这与联合国可持续发展目标的要求相呼应。普华永道数据显示,80%消费者愿意为可持续生产的产品支付更高价格,环保产品日益受到市场青睐。与此同时,《国际财务报告准则可持续发展披露标准》、欧盟《企业可持续发展报告指令》、欧盟及英国碳边境调节机制等全球法规体系,正在持续强化可持续发展报告要求并激励绿色生产。
本文由MIT Technology Review旗下定制内容团队Insights创作,未经编辑部采编。所有内容均经由人类作者、编辑、分析师及插画师完成调研、设计与撰写,包括问卷调查编写及数据收集。若使用人工智能工具,仅限经过严格人工审核的辅助生产流程。
深度聚焦
人工智能领域
谷歌首次披露单次AI查询能耗数据
这是头部AI企业迄今最透明的能耗评估,为研究人员提供了期待已久的数据窗口。
OpenAI研究未来的两位塑造者
独家专访研究部门双主管马克·陈与雅库布·帕霍茨基,探讨强化推理模型与超对齐技术发展路径。
在个人电脑运行大语言模型指南
如今您可在自有计算机上安全便捷地运行实用模型,具体方法如下。
GPT-5正式发布后的展望
这次备受期待的升级为ChatGPT用户体验带来多项改进,但距离通用人工智能仍相去甚远。
保持联系
获取MIT Technology Review最新动态
了解特别优惠、头条新闻、近期活动等更多资讯。
英文来源:
Sponsored
Designing better products with AI and sustainability
AI tools can transform a product’s impact throughout its life cycle, setting businesses up for the future.
In association withTech Mahindra
On a mission to reduce the environmental impact of manufacturing components, Siemens turned its attention to the design of a robot gripper. Making up just 2% of the robot, the impact of this hand-like device may seem inconsequential. But, reducing its weight by 90% and the number of constituent parts by 84% can save up to 3 tons of carbon dioxide emissions per robot per year. Consider the impact of equivalent savings across every gripper on the more than 4 million industrial robots worldwide—that is quite the step change.
To achieve this feat, Siemens used AI-powered generative design tools to autonomously explore possible solutions and rapidly test and optimize them for functionality and manufacturability. “AI and generative AI are fundamentally reshaping how sustainability is integrated into product development,” says Pina Schlombs, sustainability lead and industrial AI thought leader at Siemens. “By enabling smarter design choices, real-time impact assessments, and circular design, these technologies empower businesses to create innovative products that meet both market and environmental demands.”
As global carbon emissions reached a record high in 2024, pressure is mounting on companies to reduce their environmental footprint in alignment with the UN’s Sustainable Development Goals. Consumers also increasingly value products that are better for the environment with 80% willing to spend more on sustainably produced goods, according to PWC. And regulations around the world, including the IFRS Sustainability Disclosure Standards, the EU Corporate Sustainability Reporting Directive, and the EU and UK Carbon Border Adjustment Mechanism are increasingly enforcing reporting and incentivizing sustainable production.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.
This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.
Deep Dive
Artificial intelligence
In a first, Google has released data on how much energy an AI prompt uses
It’s the most transparent estimate yet from one of the big AI companies, and a long-awaited peek behind the curtain for researchers.
The two people shaping the future of OpenAI’s research
An exclusive conversation with Mark Chen and Jakub Pachocki, OpenAI’s twin heads of research, about the path toward more capable reasoning models—and superalignment.
How to run an LLM on your laptop
It’s now possible to run useful models from the safety and comfort of your own computer. Here’s how.
GPT-5 is here. Now what?
The much-hyped release makes several enhancements to the ChatGPT user experience. But it’s still far short of AGI.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.