«

生物学年度回顾

qimuai 发布于 阅读:24 一手编译


生物学年度回顾

内容来源:https://www.quantamagazine.org/the-year-in-biology-20251215/

内容总结:

《量子杂志》年度生物学报道回顾:从细胞记忆到地球史诗

过去一年,《量子杂志》的生物学报道深入探索了生命科学中诸多迷人领域。本文精选其中部分精彩内容,以飨读者。

细胞也有“记忆”?挑战神经科学传统认知

“记忆”一词对人类而言指向对过往人事的回忆,在神经科学中常被理解为神经元间的物理连接或行为改变。但细胞生物学家如何理解记忆?作家克莱尔·L·埃文斯通过回顾关于无神经系统生物(如单细胞生物)记忆能力的研究历史,带领读者进行了一场科学、哲学与语义的探索。实验表明,单个细胞能记录环境刺激(如化学脉冲),这模糊了记忆、记忆者与记忆行为之间的界限,并对神经科学的基础概念提出了深刻质疑。

地球生命史诗:跨越5.4亿年的碳循环叙事

生物学将我们置于深邃的时间洪流中。在《量子杂志》基础气候科学特刊中,作者彼得·布兰嫩借助最新的地质气候模型,将寒武纪的三叶虫海洋、石炭纪的巨型沼泽、侏罗纪的恐龙世界等片段,编织成一幅连贯的动物时代地球史画卷。这篇跨越5.4亿年的报道揭示了岩石、大气、水和生命之间相互塑造的紧密联系:原始森林改造了古代世界,热带煤沼将二氧化碳埋入地质深渊,浮游生物沉降海底后又通过火山喷发将碳重新释放。这不仅是生物演化史,更是一部行星演化史,彰显了所有生命终为地球碳循环一部分的宏大事实。

人工智能并非人脑,但这并非缺陷

当前,人们常将人工智能的神经网络与人脑相提并论。但《量子杂志》特约撰稿人亚瑟明·萨普拉科格鲁指出,这种类比过度简化了人脑的极端复杂性。人工神经网络虽源于早期的神经科学模型,但人脑细胞是由精确时序释放的多种分子控制的“极其复杂的造物”。理解两者的根本差异,不仅有助于我们更客观地看待AI,也能让我们重新敬畏人脑——这位神经科学家口中的“已知宇宙中最复杂的活性物质”。

科学源于好奇:在实用与纯粹探索之间

生态学家蕾切尔·卡森曾主张,人生而具备科学家的好奇心。斯坦福大学的工程师兼微生物学家马努·普拉卡什正是这一理念的践行者。他将一半时间用于研究疟疾诊断等全球性健康问题,另一半则投入“对任何人都无用”的基础科学问题。这种对纯粹知识探索的捍卫,体现了基础科学作为社会基石的价值。

触摸的奥秘:皮肤之下隐藏的感知世界

触觉是我们最复杂的感觉之一。哈佛医学院神经生物学家大卫·金蒂(被同行称为“触觉皇帝”)的研究揭示了皮肤中错综复杂的神经元网络。这些形态各异的细胞是机械感受器,能将不同频率的振动或温度转化为对冷热、压力、疼痛、瘙痒、愉悦乃至身体空间位置的细腻感知。通过荧光成像技术看到的这些细胞肖像,展现了一个通常无法察觉的微观感知世界,彻底改变了我们对触觉体验的理解。

中文翻译:

卡洛斯·阿罗霍为《量子杂志》撰稿
细胞能记住什么?
回顾《量子》过去一年的生物学报道时,我正依靠记忆从众多精彩文章中挑选推荐篇目。但"记忆"究竟意味着什么?
"记忆"是个难以捉摸的词汇。对努力回忆过往地点、人物或瞬间的人而言,它意味着某种含义;对试图搜寻脑中确知事实的人又另有所指。神经科学家或许会将"记忆"定义为神经元间的物理连接、认知过程激活的神经网络,或是生物体基于过往经历产生的行为改变。
但对细胞生物学家——乃至细胞本身——而言,记忆是什么?这正是作家克莱尔·L·埃文斯在科学、哲学与语义的探索之旅中探讨的主题。她追溯了被长期遗忘又近期复兴的"无神经记忆"研究史,通过横跨数十年的新旧实验,检验单个细胞是否能够记录环境中的化学脉冲等经历。这些实验正在挑战神经科学的基本理念。埃文斯写道,对细胞而言,"记忆本身、记忆载体与记忆行为之间不存在界限"。人类是否也是如此?
以下是我认为值得铭记的2025年更多精彩报道。

马克·贝兰为《量子杂志》绘制
动物纪元:地球生命传记
生物学最令我着迷的特质之一,是演化将我们置于深邃时间洪流中的方式。它将我们与数十亿年的挣扎、生存与适应相连,让祖先以难以辨识的形态存在于几乎无法理解的世界,也让我更能体会当下时代的奇异。通常我们只能零散窥见这些远古世界:三叶虫统治的寒武纪海洋、恢弘的石炭纪沼泽、奇幻的侏罗纪恐龙。在《量子》基础气候科学特辑中,彼得·布兰嫩借助地质气候模型的最新进展,带领我们踏上一场贯穿动物演化史的地球叙事之旅——将散落的时间碎片编织成完整篇章。
构建这样的宏大叙事绝非易事。布兰嫩必须整合远古气候的遥远细节(动物存亡其间的冰封与温室世界),并将其置于科学家通过化石与基因组证据推演出的演化框架中。他的努力凝结成这篇跨越5.4亿年的杰作,揭示岩石、大气、水与生命如何相互塑造。他向我们展现"开创性森林如何地质改造远古世界","巨型昆虫穿梭的热带煤沼首次被埋藏,将二氧化碳送入地质深渊",以及"如雪花般飘落海底的钙质浮游生物,在深海沟槽经历熔炼后,最终通过火山喷发以二氧化碳形式重返地表"。
这种视角将我们的故事从生物演化推向行星演化,揭示人类存在与认知终将是地球碳循环的一部分。作为有生命、会呼吸、具象化的碳元素存在于世,这本身难道不壮丽吗?

伊雷妮·佩雷斯为《量子杂志》绘制
人工智能与大脑天差地别,这很正常
如今我们生活在一个由带电神经元构成的智能网络世界中,这些网络通过发射信号处理信息、唤醒记忆、用语言构建世界表征。等等——我描述的是生物大脑还是驱动人工智能的神经网络?
对生物学家而言,这类类比常被视为科技营销对神经科学的滥用。但我仍想探究:这两种网络智能究竟如何比较?通过对比人脑与人工智能能否相互启发?
资深撰稿人亚瑟明·萨普拉科格鲁的专题报道给出了答案。《人工智能与大脑天差地别,这很正常》追溯了人工神经网络在神经科学模型中的起源,揭示早期计算神经科学家数十年的假设与简化,如何导致人们对人脑复杂性、多样性及网络特性的普遍误解。萨普拉科格鲁指出,人工神经元确实能像生物神经元那样激活连接,但构成大脑的细胞是"极其复杂的造物",其行为受"精密时间尺度释放的分子群落调控"。
如今我对人工智能有了新认识,但更重要的是,对脑中这个奇迹器官产生了全新敬畏——正如一位神经科学家所言,这是"已知宇宙中最复杂的活性物质"。本文是《量子》"人工智能与基础科学复杂关系"系列报道之一,欢迎探索完整专题。

雷切尔·布贾尔斯基为《量子杂志》绘制
悖论之问与朴素惊奇如何引领伟大科学
生态学家雷切尔·卡森逝世次年出版的《惊奇之感》令我深受震撼。她坚信每个人生来都是科学家,但随着成长,这种与生俱来的好奇心逐渐被消磨。她的观点深刻影响了我的科学写作,而在斯坦福大学工程师兼微生物学家马努·普拉卡什身上,我看到了这种精神的延续。这位《量子》访谈对象告诉作者莫莉·赫林,他的哲学理念驱使自己将"一半时间用于研究具有全球影响的紧迫健康问题,另一半则追寻'对任何人都无用'的命题"。
对话展现了一位永葆创造力与行动力的科学家形象:今日捕捞奇特浮游生物研究其生物物理机制,明日发明低成本工具实现疟疾现场诊断。普拉卡什拥护并捍卫《量子》所报道的基础科学,他对赫林强调这类研究"并非服务于特定目的,而是奠定整个社会根基的基础工程"。

大卫·金蒂供图
触觉:细胞传感器构筑的复杂感知景观
触觉如何运作?被同行称为"触觉皇帝"的哈佛医学院神经生物学家大卫·金蒂,毕生致力于揭示皮肤中令人惊异的神经元群落。《量子》撰稿人阿里尔·布莱赫尔写道:"这些形态奇特的细胞造就了触觉体验的丰富性与多维度——为何手机震动异于暖风拂面、爱人爱抚、雨滴轻触或母亲亲吻。意识到它们覆盖全身、成为你的一部分时,那种震撼令人屏息。"
布莱赫尔向我推介这个故事时,将触觉神经元描述为演化造就的工程奇迹。这些微小的机械结构分布于皮肤表层或下层,当被温度或不同频率振动激活时,便向神经系统发送信号,生成温暖、寒冷、压力、疼痛、瘙痒、愉悦、柔软、坚硬等感知,以及对身体空间位置的觉知。
布莱赫尔对神经元及其机制的描述,结合金蒂拍摄的各类细胞荧光图像,展现了一个超越我们感知的完整世界。一旦你看见这个世界,对这份精妙多维的感知体验将永不同往昔。

英文来源:

Carlos Arrojo for Quanta Magazine
What Can a Cell Remember?
As I reflect on a year of Quanta biology stories to decide which of the many excellent ones to recommend, I am relying on memory. But what exactly does that mean?
“Memory” is a slippery word. It means one thing to a person striving to recall places, people or moments from the past, and another to someone searching their mind for a fact they swore they knew. A neuroscientist might consider a “memory” to be a physical connection between neurons or networks reactivated by cognitive processes, or the changes in an animal’s behavior in response to something it experienced in the past.
But what is memory to a cell biologist — or to a cell? This is what the writer Claire L. Evans explored in her scientific, philosophical, semantic journey through the long-forgotten and recently revived history of aneural, or brainless, forms of memory. She recounts decades-old and brand-new experiments that test whether individual cells record experiences, such as pulses of chemicals in their environments. In the process, these experiments challenge fundamental ideas in neuroscience. For a cell, Evans writes, “there’s no distinction between memory, the memorizer and the act of remembering.” Is that also true for us?
Here are some more stories from 2025 that I think are worth remembering.
Mark Belan/Quanta Magazine
A Biography of Earth Across the Age of Animals
One of the many things I love about biology is the way evolution situates us in the grand context of deep time. It connects us to billions of years of struggle, survival and adaptation; it places my ancestors in unrecognizable forms and almost incomprehensible worlds, and helps me appreciate the strangeness of our age, too. Usually we glimpse these ancient worlds one at a time: the Cambrian seas ruled by trilobites, the great Carboniferous swamps, the fantastic dinosaurs of the Jurassic. In Quanta’s special issue on basic climate science, Peter Brannen takes us on an extensive and fascinating journey through the latest advances in geologic climate modeling, which is trying to weave these stories of past worlds into a single narrative — the history of Earth for as long as animals have occupied it.
Telling such a tale is no small feat. To assemble this tour de force, Brannen had to compile far-flung details about past climates — the frozen and hothouse worlds through which animals lived and died — and situate them within the deductions scientists have made about evolution from fossil and genomic evidence. His effort paid off in a piece that spans 540 million years of interconnections between rocks, atmosphere, water and life, each of which makes and reshapes the others. He introduces us to the “pioneering forests [that] geoengineered the ancient world,” the “tropical coal swamps, streaked by titanic bugs, [that] were first buried in this age, moving carbon dioxide into the geologic abyss,” and the chalky plankton that drifted like snow to the seafloor and was “delivered to deep sea trenches, cooked and then released through the throats of volcanoes at the surface again as carbon dioxide.”
This perspective propels our story beyond biological evolution and into planetary evolution. It reveals that all we are and will ever know is ultimately part of Earth’s carbon cycle. And isn’t it glorious to be present as living, breathing, embodied carbon?
Irene Pérez for Quanta Magazine
AI Is Nothing Like a Brain, and That’s OK
Today we live surrounded by intelligent networks of electrified neurons that fire signals to process information, recall memories and create representations of the world using language. But wait — am I talking about living brains or the neural networks that power artificial intelligence?
To a biologist, such comparisons can feel like an abuse of neuroscience in service of tech marketing, but I still want to know: How do these two kinds of networked intelligences measure up? Is there anything to learn about the human brain by comparing it to AI, or vice versa?
A feature by staff writer Yasemin Saplakoglu delivers answers to these questions and more. “AI Is Nothing Like a Brain, and That’s OK” explores the origins of artificial neural networks in neuroscience models, and shows how decades of assumptions and simplifications by early computational neuroscientists have led to widespread misunderstanding of the complexity, diversity and networked nature of the human brain. Yes, artificial neurons fire and connect like biological ones — but the cells that make up our brains are “wicked complicated things,” Saplakoglu writes, “whose behaviors are controlled by a menagerie of molecules released on precise timescales.”
I now have a new understanding of AI, but more importantly, I feel a fresh appreciation for the complexity of the miraculous organ in my head, “the most complex piece of active matter in the known universe,” as one neuroscientist told Saplakoglu. This piece ran as part of Quanta’s series on artificial intelligence’s complex relationship with fundamental science. Check out the entire project here.
Rachel Bujalski for Quanta Magazine
How Paradoxical Questions and Simple Wonder Lead to Great Science
I’m a huge fan of ecologist Rachel Carson’s book The Sense of Wonder, published in 1965, a year after her death. In it she insists that every one of us is born a scientist, with innate curiosity about the world that gets drilled out of us as we become adults. Her argument has influenced my approach to science journalism, and I find it embodied in Manu Prakash, an engineer and microbiologist at Stanford University, who was the subject of a Quanta Q&A. Prakash’s philosophy compels him to spend “half his time studying urgent health issues with global impact and the rest pursuing questions ‘of no use to anyone,’” he told writer Molly Herring.
The conversation captures an endlessly creative and active scientist — one day reeling in strange plankton to investigate their biophysical mechanisms and the next inventing low-cost tools to diagnose malaria in the field. Prakash embraces and defends the basic science we cover at Quanta — research that is “not at the service of something, but the groundwork that is our entire society’s foundation,” he told Herring.
Courtesy of David Ginty
Touch, Our Most Complex Sense, Is a Landscape of Cellular Sensors
How does our sense of touch work? David Ginty, a neurobiologist at Harvard Medical School known to some colleagues as “the emperor of touch,” has dedicated his career to documenting the surprising menagerie of neurons that innervate our skin. “These strangely shaped cells are the reason why the experience of touch is so rich and multifaceted — why a buzzing cell phone feels different from a warm breeze or a lover’s caress, from raindrops or a mother’s kiss,” writes Quanta contributor Ariel Bleicher. “To realize that your body is covered in them — that they are a part of you — takes your breath away.”
When Bleicher pitched me this story, she described the touch neurons as evolved feats of engineering. They are little mechanical objects at the surface of our skin or just beneath it that, when activated by temperature or vibrations of various frequencies, send signals to our nervous system to generate perceptions — warmth and cold, pressure, pain, itchiness, pleasure, softness and hardness, and awareness of the body in space.
Bleicher’s descriptions of the neurons and their workings, paired with Ginty’s fluorescent portraits of the various cell types, convey an entire world operating beyond our perception. Once they help you see it, you won’t experience this nuanced, multidimensional sense the same way again.

quanta

文章目录


    扫描二维码,在手机上阅读